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Abstract—A common problem that affects object alignment
algorithms is when they have to deal with objects with un-
seen intra-class appearance variation. Several variants based
on gradient-decent algorithms, such as the Lucas-Kanade (or
forward-additive) and inverse-compositional algorithms, have
been proposed to deal with this issue by solving for both
alignment and appearance simultaneously. In [1], Baker and
Matthews showed that without appearance variation, the inverse-
compositional (IC) algorithm was theoretically and empirically
equivalent to the forward-additive (FA) algorithm, whilst achiev-
ing significant improvement in computational efficiency. With ap-
pearance variation, it would be intuitive that a similar benefit of
the IC algorithm would be experienced over the FA counterpart.
However, to date no such comparison has been performed. In this
paper we remedy this situation by performing such a comparison.
In this comparison we show that the two algorithms are not
equivalent due to the inclusion of the appearance variation
parameters. Through a number of experiments on the MultiPIE
face database, we show that we can gain greater refinement using
the FA algorithm due to it being a truer solution than the IC
approach.

I. INTRODUCTION

The accurate alignment of images is essential to almost

all tasks in computer vision. Lucas and Kanade [2] devised

an algorithm to image alignment using a gradient-descent

approach, which worked on the basis of iteratively minimising

the squared difference between a template and input image.

Since then, the Lucas-Kanade algorithm has become one of

the most widely used techniques in computer vision. However,

an inherent problem with the Lucas-Kanade algorithm is the

computational cost associated with the calculating the gradi-

ents of the input image at each iteration. In the seminal work

of Baker and Matthews [1], they alleviated this overhead by

swapping the role of template and input image, thus allowing

for significant savings in computation by pre-computing the

gradients from the template. In this overview paper, Baker

and Matthews theoretically and empirically showed that their
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Fig. 1. Given that we have an ensemble of offline training face images,
aligning the template to the unseen subject can be problematic as it is assumed
that the template appears within the unseen image (which is obviously not
true). Simultaneously solving for both the alignment and appearance by
incorporating variation in the template has shown itself to somewhat overcome
this problem. In this paper we show that by using the forward-additive (FA)
algorithm we can achieve greater refinement compared to the current inverse-
compositional (IC) algorithm which is in use.

implementation, which they called the inverse-compositional

(IC) algorithm, was equivalent to the Lucas-Kanade (or oth-

erwise known as the forward-additive (FA)) algorithm. This

result was important as the IC algorithm provided an efficient

framework in which tasks like object alignment and tracking

could be performed in real-time [3].

A problem with gradient-descent approaches such as the

FA and IC algorithms, are that they have poor generalisation

properties when they have to deal with previously unseen intra-

class object variation [4]. This is due to the assumption that the

template appears within the input image which is problematic.

For example for aligning faces (see Figure 1), if we learn a

template face from an ensemble of training face images and

try to align it to an unseen face, there is a very high probability

that the template face and input face will be misaligned. This
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is because of the discrepancy between the appearance of the

template face and the input face image.

In an attempt overcome this inherent mismatch, Black

and Jephson [5] proposed an algorithm that incorporated the

appearance variation in the template through an ensemble of

known appearance variation images (which were learnt from a

stack of images) and unknown appearance parameters. In this

work, Black and Jephson utilised the FA framework. Baker et

al. [6] employed a similar strategy, however they employed the

IC algorithm. They called this the simultaneous algorithm, as

it solved for both alignment and appearance at the same time

using the IC framework.

As noted previously, it was shown in [1] that the IC

algorithm was much more computationally efficient than the

FA approach, whilst achieving the same alignment perfor-

mance. As such, it would be intuitive that the simultaneous IC

algorithm would enjoy the same performance and efficiency

improvement over the simultaneous FA algorithm. However,

no such comparison has been made. In an attempt to remedy

this situation, in this paper we focus on providing a comparison

between these two algorithms. From this comparison, we will

show that these assumptions are not valid as the appearance

variation parameters are included into different terms for both

approaches, thus resulting in different solutions. The appear-

ance parameters also diminish the advantage in efficiency as

no pre-computation can take place1.

In this paper, we show that the simultaneous FA algorithm

provides a truer solution than the simultaneous IC algorithm

as it does not include any second order terms. As a result, we

show by using the simultaneous FA approach, we can get finer

alignment compared to the simultaneous IC algorithm. Hence,

our specific contributions stemming from this paper are:

• We implement a simultaneous FA approach to image

alignment to alleviate the problem of linear appearance

variation and compare it to the IC counterpart (Section

3). No such comparison has been done before.

• Mathematically, we show that the simultaneous FA and

simultaneous IC algorithms are intrinsically different.

From this we show that the simultaneous FA is a truer

solution than the simultaneous IC approach (Section 3).

• In our experiments we show that the simultaneous FA

algorithm achieves greater refinement than the simulta-

neous IC algorithm with an initial pixel error of 5 RMS

for the affine warp (Section 4).

II. BACKGROUND: IMAGE ALIGNMENT ALGORITHMS

A. Forward-Additive Algorithm

The standard Lucas-Kanade or forward-additive (FA) align-

ment algorithm attempts to find the parametric warp p that

1It is worth noting that the simultaneous IC framework does allow for
the “project-out” algorithm [6] which is a very computationally efficient
algorithm. However, this algorithm suffers from poor alignment when the
appearance variation is large due to simplifying assumptions. As we are
interested in the performance, the “project-out” algorithm was not considered
in this paper.

minimises the sum of the squared error between the template

image T and the input imageY 2, such that

arg min
p

‖Y (W(z;p)) − T (W(z;0)‖2
(1)

where the vector z =
[
xT

1 , . . . ,xT
N

]T
is a concatenation of

individual pixel 2D coordinates x within the template image

T . One can map the image positions z to a set of new positions

z′,

z′ = W(z;p) =
[W(x1;p)T , . . . ,W(xN ;p)T

]T
(2)

based on the warp parameters p. The warp function is canon-

ically translation W(x;p) = x + p, but W(x;p) has been

extended to numerous other types of warps such as affine

[5,3] and piece-wise affine [8]. In this paper we focus on

the affine warp, which consists of n = 6 parameters such

that p = [p0, . . . , p5]
T

. Minimising Equation (1) is a non-

linear optimisation task, so to optimise it we assume that a

current estimate of p is known and then iteratively solve for

increments to the parameters Δp, where p ← p + Δp . As

such, we minimise the following expression

arg min
Δp

‖Y (W(z;p + Δp)) − T (z)‖2
(3)

with respect to Δp. It is worth noting that from here on

we shall refer to T (W(z;0)) as T (z) because W(z; 0) is

the identity warp as W(z;0) = z. Before we can minimise

Equation (3), we need to linearise Y (W(z;p+Δp)). We can

do this via the Taylor series expansion which yields

∥∥∥∥∥Y (W(z;p)) + ∇Y T ∂W(z;p)T

∂p
Δp − T (z)

∥∥∥∥∥
2

(4)

From this we can denote the steepest-decent images as

SDFA(z) =
∂W(z;p)

∂p
∇Y (5)

and the error image as

EFA(z) = T (z) − Y (W(z;p)) (6)

Therefore, substituting in the steepest-decent and error images

back into Equation (4), the minimisation with respect to Δp
gives

2SDFA(z)
[
SDFA(z)T Δp − EFA(z)

]
(7)

Setting Equation (7) to equal zero and solving for Δp yields

Δp = H−1SDFA(z)EFA(z) (8)

where the Hessian matrix

2For convenience we employ the notation that ‖a−b‖2 = (a−b)T (a−b),
where a and b are column vectors
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H = SDFA(z)SDFA(z)T (9)

We iteratively solve for Δp and then update p ← p + Δp
until convergence or a maximum number of iterations is

met. This non-linear optimisation process is called Gauss-

Newton optimisation [7], but other least-square variants such

as Newton and Levenberg-Marquardt optimisations can be

used [7].

B. Inverse-Composition Algorithm

As pointed out by Baker et al. [7], there is a huge compu-

tational cost associated with the FA algorithm as the Hessian

matrix in Equation (9) needs to be calculated every iteration.

To overcome this problem, Baker et al. [7] found a way

of switching the roles of the template and the input image,

by compositionally inverting the warp parameters. By doing

this, it allows the Hessian to be calculated from the constant

template image, which which allows it to be precomputed,

resulting in considerable computational savings. This is called

the inverse-compositional (IC) algorithm and as mentioned,

it is implemented by essentially inverse-composing the warp

update, i.e. W(z;p) ← W(W(z;Δp)−1;p). Thus, instead of

minimising Equation (4), we attempt to minimise∥∥∥∥∥[T (z) −∇TT ∂W(z;0)
∂p

T

Δp + Y (W(z;p))

∥∥∥∥∥
2

(10)

By employing a similar process to the FA algorithm, we

can obtain the Δp which minimises the expression. Updating

our current estimate of the warp parameters p is done by

evaluating W(z;p) ← W(W(z;Δp)−1;p). So for the IC

algorithm,

Δp = −H−1SDIC(z)EIC(z) (11)

where the Hessian matrix is

H = SDIC(z)SDIC(z)T (12)

and the steepest-decent images3 are

SDIC(z) =
∂W(z;0)

∂p
∇T (13)

and the error image is

EIC(z) = T (z) − Y (W(z;p)) (14)

In [7], the FA and IC algorithms are shown to obtain the

same image alignment performance. We also show this to be

the case in the experiments presented in Section 5. However,

this is not the case when appearance variation is included. We

investigate this in the next section.

3It is worth noting that when we are finding the Jacobian matrix
∂W(z;0)

∂p
�=

∂z
∂p

as the Jacobian is found as
∂W(z;0)

∂p
=

∂W(z;p)
∂p

|p=0

III. SIMULTANEOUS ALGORITHMS

A. Simultaneous IC Algorithm

The image alignment algorithms described in the previous

section both assume that the template appears in the input im-

age. However, as noted back in Fig. 1, this assumption is likely

to cause misalignment due to the appearance variation between

the template and the input image. To counteract this, Baker

et al. [6] included this linear appearance variation within the

framework of the IC algorithm. They achieved this by incorpo-

rating the appearance variation within the template by letting

T (z) = T (z)+
∑m

i=1 λiAi(z), where Ai, i = 1, . . . , m is a set

of known appearance variation images and λi, i = 1, . . . , m
is a set of unknown appearance parameters [6]. The set of

known appearance variation images Ai, i = 1, . . . , m, were

usually computed by applying principal component analysis

(PCA) to a set of training images and keeping the eigenvectors

which correspond to the top 95% of the energy. Therefore, by

including the appearance variation we want to minimise

∥∥∥∥ T (W(z;Δp)) − Y (W(z;p))
+

∑m
i=1(λi + Δλi)Ai(W(z;Δp))

∥∥∥∥
2

(15)

simultaneously with respect to Δp and Δλ =
(Δλ1, . . . , λm)T , and then updating the warp

W(z;p) ← W(W(z;Δp)−1;p) and the appearance

parameters λ ← λ + Δλ. The appearance parameters are just

additively updated as composition has no meaning for them

[6]. As the expression in Equation 15 is non-linear, we need

to linearise it by performing a first order Taylor expansion on

T (W(z;Δp)) and Ai(W(z;Δp)). This yields

∥∥∥∥∥∥∥∥∥∥

T (z) + ∇TT ∂W(z;0)
∂p

T
Δp − Y (W(z;p))

+
∑m

i=1 λiAi(z) +
∑m

i=1 ΔλiAi(z)

+
∑m

i=1 λi∇Ai
T ∂W(z;0)

∂p

T
Δp

+
∑m

i=1 Δλi∇Ai
T ∂W(z;0)

∂p

T
Δp

∥∥∥∥∥∥∥∥∥∥

2

(16)

For this expansion, we can see that the last term∑m
i=1 Δλi∇Ai

T ∂W(z;0)
∂p

T
Δp is a second-order term which

makes solving for Δp and Δλ prohibitive (see Appendix A

for details). As such this term is neglected which addressed

later on in the next subsection. For the IC algorithm, neglecting

this term simplifies the expression to:

∥∥∥∥∥∥∥
T (z) − Y (W(z;p)) +

∑m
i=1 λiAi(z)

+ (∇T +
∑m

i=1 λi∇Ai)
T ∂W(z;0)

∂p

T
Δp

+
∑m

i=1 Ai(z)Δλi

∥∥∥∥∥∥∥
2

(17)

From this we can determine the (n + m) × N dimensional

steepest-descent images as

SDsimIC(z) =

[
∂W(z;0)

∂p (∇T +
∑m

i=1 λi∇Ai)
[A1(z), . . . , Am(z)]T

]
(18)
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where q = [p, λ]T and Δq = [Δp,Δλ]T , and where q is the

associated n+m dimensional column vector. The error image

can then be computed as

EsimIC(z) = T (z) +
m∑

i=1

λiAi(z) − Y (W(z;p)) (19)

The change in the warp parameters p and λ can therefore be

found by solving for the Δq which minimises

[
EsimIC(z) + SDsimIC(z)T Δq

]2
(20)

with respect to Δq, which results in

Δq = −H−1SDsimIC(z)EsimIC(z) (21)

where the Hessian matrix is

H = SDsimIC(z)SDsimIC(z)T (22)

It should be noted that in the simultaneous IC algorithm, in

addition to it being an approximation, the computational bene-

fit of the inverse-composition is lost as the Hessian matrix has

to be recomputed every iteration as the appearance parameters

are included in the steepest-decent image calculation.

B. Simultaneous FA Algorithm

Incorporating the appearance variation within the FA algo-

rithm is performed in the same manner as the IC algorithm,

where we include the appearance variation in the template.

This changes the original FA minimisation equation in (4) to

∥∥∥∥∥Y (W(z;p + Δp)) − T (z) −
m∑

i=1

(λi + Δλi)Ai(z)

∥∥∥∥∥
2

(23)

As we can see from the above equation, we only have to

linearise one term and not two like for the simultaneous IC

scenario. Linearising this equation gives us

∥∥∥∥∥ Y (W(z;p)) + ∇Y T ∂W(z;p)
∂p

T
Δp − T (z)∑m

i=1 λiAi(z) − ∑m
i=1 Ai(z)Δλi

∥∥∥∥∥
2

(24)

which results in no second-order terms, which was the case

in the simultaneous IC algorithm. Solving this equation by

minimising with respect to Δq, gives us

Δq = H−1SDsimFA(z)EsimFA(z) (25)

where the Hessian matrix is

H =
∑
z

SDsimFA(z)SDsimFA(z)T (26)

and the steepest-decent images are

SDsimFA(z) =

[
∂W(z;p)

∂p ∇T

[A1(z), . . . , Am(z)]T

]
(27)

Fig. 2. Example images from the MultiPIE database [8] used in our alignment
experiments. Eye and nose ground-truth points are denoted on each face with
red “x’s” with the resulting red solid line bounding box taken around those
coordinates. A blue dashed line bounding box denotes an instance where the
ground-truth points are perturbed by random noise ranging between 5-10 root
mean squared point error (RMS-PE). The images within the MultiPIE database
exhibit a large amount of expression variation making alignment challenging.

The error image is described by Equation (19). In the simul-

taneous FA algorithm, we update both the warp parameters p
and appearance parameters λ additively (i.e. p ← p + Δp
and λ ← λ+Δλ). Like the other algorithms, we continue this

iterative process until convergence or the maximum number

of iterations is met. In the next section we show in our ex-

periments that even though the original FA and IC algorithms

yield the same alignment performance, the same can not be

said for the simultaneous algorithms due to the appearance

variables.

IV. EXPERIMENTS

All experiments in this paper were conducted on the frontal

portion of the MultiPIE face database [8]. A total of 1128

images were employed in this subset of the database taken

across 141 subjects. Face images varied substantially in ex-

pression (see Fig. 2 for examples) making detection and

alignment quite challenging. This data set was separated into

subject independent training and testing sets with 560 and

568 images in each set respectively. In our experiments we

assume that all warped images are referenced as an 80 × 80
image. We obtained the poor initial alignment by synthetically

adding affine noise to the ground-truth coordinates of the face

(located at the eyes and nose). We randomly generated affine

warps W(z;p) in the following manner. We used the top

left corner (0, 0), the top right corner (79, 0) and the center

bottom pixel (39, 79). We then perturbed these points with a

vector generated from white Gaussian noise. The magnitude

of this perturbation was controlled to give a desired root

mean squared (RMS) pixel error (PE) from the ground-truth

coordinates. During learning, the initially misaligned images

were defined to have between 5-10 RMS-PE. This range

of perturbation was chosen as it approximately reflected the

range of alignment error error seen when employing the freely

available OpenCV [9] face detector (see Fig. 1 for examples

of this perturbation). In all experiments we conducted in this

paper our warped training and testing examples are assumed

to have zero bias and unit gain.
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Fig. 3. Alignment results showing the difference between the FA and IC algorithms without (a) and with (b) appearance variation included in the template
with a RMS-PE of 5.
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Fig. 4. Alignment results showing the difference between the FA and IC algorithms without (a) and with (b) appearance variation included in the template
with a RMS-PE of 7.5.
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Fig. 5. Alignment results showing the difference between the FA and IC algorithms without (a) and with (b) appearance variation included in the template
with a RMS-PE of 10.

To gauge what affect solving both for alignment and ap-

pearance has on the alignment performance on unseen faces,

we compared the simultaneous FA and IC algorithms to just

the normal FA and IC algorithms (no appearance variation).

To do this we used an alignment convergence curve (ACC) for

5, 7.5 and 10 RMS-PE. These curves are shown in Figures 3,

4 and 5 respectively. These curves have a threshold distance

in RMS-PE on the x-axis and the probability of trials that

achieved convergence (i.e., final alignment RMS-PE below

the threshold) on the y-axis. A perfect alignment algorithm

would receive an ACC that has 1 (or 100%) convergence for

all threshold values.

Across all these results, it should first be noted that for the

various initial perturbations, both the FA and IC algorithms

without appearance variation achieve the same alignment

performance (Figures 3(a), 4(a) and 5(a)). This backs up the

results by Baker et al. in [7]. However, the interesting results

come when the appearance variation parameters are included.

Specifically in Fig. 3(b) where adding the appearance variation

sees both the FA and IC algorithms improve in alignment

convergence over Fig. 3(a), with the simultaneous FA outper-

forming the IC counterpart by quite a margin (∼ 8%). A major

reason for this is that due to the simultaneous FA algorithm

being a truer solution than the simultaneous IC algorithm

(Section III(b)), this results in greater refinement.

In Fig. 4(b), it can be seen that including the appearance

variation does improve the alignment convergence over the

normal FA and IC algorithms (Fig. 4(a)) as well. However,

both the simultaneous FA and IC algorithms achieve approx-

imately the same performance, which is different from the

results in Fig. 3(b). A possible explanation of this maybe

that even though the simultaneous FA algorithm may provide

greater alignment as seen in Fig. 3(b), the fact that the

initial error is farther away (∼ 7.5 pixels) may mean that
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this improvement is somewhat diminished as sometimes the

algorithm may get caught in local minima. It appears that due

formulation of the simultaneous IC algorithm including the

appearance variation in the steepest-decent images (compare

Equations (18) to (27)), more of a blurring effect occurs within

this process, making it less prone of to getting caught in

local minima. The trade-off with this though is that closer

refinement is difficult to achieve, as seen in Fig. 3(b).

This above hypothesis is somewhat reinforced by the results

in Fig. 5(b) with an initial error of 10 RMS-PE. For this

experiment, only the simultaneous IC algorithm achieved a

improvement in alignment convergence using the appearance

variation parameters, with the simultaneous FA algorithm

achieving the same as the original FA algorithm. We believe

this to be caused again by the algorithm getting caught in local

minima. Again, a possible explanation of the simultaneous IC

algorithm being superior for when the initial error is large, is

that due to it including the appearance variation in the steepest-

decent images, it can circumvent this problem.

V. CONCLUSION

In this paper we presented a comparison between the

simultaneous FA and IC algorithms, which has not been done

before. In this comparison we showed that these two algo-

rithms were not equivalent theoretically due to the inclusion of

the appearance variation parameters into the template image.

As the role of the template is switched between the FA and

IC algorithms, this resulting in the simultaneous IC algorithm

containing second-order terms, which had to be omitted. This

switching of roles also affected the calculation of the steepest-

decent images for both algorithms, with the simultaneous

IC algorithm having both the gradients of the template and

appearance images within them compared to just the template

for the simultaneous FA algorithm. Due to this we found

through our experiments on the MultiPIE database that the

simultaneous FA algorithm performance significantly better

when the initial alignment error was low (∼ 5 RMS-PE) as the

gradients were much finer, while the simultaneous IC gradients

were much coarser. This can also account for the results when

the initial error was larger, with the results of the simultaneous

FA algorithm diminishing as it is more likely to get caught

in local minima with the finer gradients. Conversely, with

the coarser gradients in the simultaneous IC algorithm, the

alignment performance improved.
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VII. APPENDIX A

Section III illustrates the derivation of the Simultaneous

Inverse Composition Algorithm for image alignment includ-

ing appearance variation. The derivation presented involves

neglecting a second order term in order to make a solution

possible. Here, we expand what was briefly mentioned in

Section III by illustrating to the reader the complications which

arise by retaining the second order term.

Equation 16 (reproduced in Equation 28) is the expression

which contains the second order term.

⎡
⎢⎣ T (z) + ∇TT ∂W(z;0)

∂p

T
Δp − Y (W(z;p))

+
∑m

i=1 λiAi(z) +
∑m

i=1 λi∇Ai
T ∂W(z;0)

∂p

T
Δp

+
∑m

i=1 ΔλiAi(z) + f(Δp, Δλ)

⎤
⎥⎦

2

(28)

where Δλ = [Δλ1, ...,Δλm]T and f(Δp, Δλ) is the second

order term

f(Δp, Δλ) =
m∑

i=1

Δλi

[
∂W(z;0)

∂p
∇Ai

]T

Δp (29)

.

In order to find the Δp and Δλ that minimise Equation 28

using Gauss-Newton gradient descent, the partial derivatives

of Equation 28 are required.

The partial derivatives for all terms in Equation 28 except

for the the partial derivatives of f() are shown in Section III.

The partial derivatives of f() are shown in Equations 30 and

31 respectively.

∂f()
∂Δp

=
m∑

i=1

Δλi
∂W(z;0)

∂p
∇Ai (30)

∂f()
∂Δλi

= ΔpT ∂W(z;0)
∂p

∇Ai (31)

As both partial derivatives are still functions of Δp and Δλ,

the Δq which minimises Equation 28 requires obtaining Δq
which satisfies the equation

0 =
(
SDsimIC +

∂f(Δq)
∂Δq

) [
EsimIC + SDT

simIC(z)Δq
+f(Δq)

]
(32)

Minimising this expression is at best, non-trivial, and is the

justification for the removal of the second order term.
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