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Figure 1: We introduce our approach which recovers both global camera poses and point-cloud-based shape in full 3D from a
few observations in limited views, and yet guarantees photometric consistency across views. The subset of the reconstructed
point cloud which are occluded from any views in the frame is marked red. In contrast Fan et al.[7] and 3D-R2N2[5]
reconstructs shapes from single frames in canonical pose with no cameras, and openMVS[9] produces SfM results with
accurate but sparse reconstruction for visible parts only.

Abstract

Reconstructing 3D shapes from a sequence of images has

long been a problem of interest in computer vision. Classi-

cal Structure from Motion (SfM) methods have attempted

to solve this problem through projected point displacement

& bundle adjustment. More recently, deep methods have

attempted to solve this problem by directly learning a rela-

tionship between geometry and appearance. There is, how-

ever, a significant gap between these two strategies. SfM

tackles the problem from purely a geometric perspective,

taking no account of the object shape prior. Modern deep

methods more often throw away geometric constraints al-

together, rendering the results unreliable. In this paper

we make an effort to bring these two seemingly disparate

strategies together. We introduce learned shape prior in the

form of deep shape generators into Photometric Bundle Ad-

justment (PBA) and propose to accommodate full 3D shape

generated by the shape prior within the optimization-based

inference framework, demonstrating impressive results.

1. Introduction

Dating from the early age of computer vision, most of
the classic methods for reconstructing objects in 3D (e.g.
multi-view stereo and structure from motion) have been ap-
proaching this problem purely based on multi-view geome-
try: they recover the 3D shape of an object from a number
of densely sampled views by utilizing visual cues, includ-
ing feature correspondence [11, 12, 2], photometric con-
sistency [6, 3, 19] and silhouettes constraint [24, 10]. Al-
though these methods are still among the state-of-the-art,
they have been facing inherent limitations such as their in-
efficiency to deal with specularity or lack of texture, and
usually rely heavily on a complete coverage of views to ac-
quire full 3D dense reconstruction. To circumvent these is-
sues, the vision community is exploring the possibility of
introducing shape priors to the reconstruction pipeline.
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The shape prior can be parameterized in the form of ex-
plicit rigid models, such as shape primitives [21, 15, 14],
skeleton models [20] and meshes [13]. The 3D shape is then
recovered by deforming or blending the models such that
the key points/contours of the output shape are aligned to
the 2D landmarks/silhouette on the images. With constraint
from explicit shape priors, it is now possible to perform
dense full 3D reconstruction from a few or even single im-
ages. However, for a shape collection with large intra-class
variation, e.g. models of a category from the ShapeNet [4]
repository, it is generally difficult to either retrieve from ex-
isting models [27], or to faithfully reconstruct the target ob-
ject with deformation or blending, considering global corre-
spondence between models needed for the blending is diffi-
cult to establish [13].

On the other hand, some recent works [7, 16, 28, 29, 8,
26, 25] choose to model the shape prior implicitly as a deep
network, and train the network to output target representa-
tions (depth map [16], volumetric grid [28, 8, 29, 26, 25],
or point cloud [7]) directly from a single image. These ap-
proaches are purely data driven, thus hold the promise of
covering a large variety of 3D shapes given a high-capacity
deep network. However, these methods are largely re-
stricted to partial (single) view reconstruction, where the
quality of the reconstruction is often impacted by self-
occlusion or style ambiguity [5].

To take a step further, 3D-R2N2 [5] demonstrates that,
by taking observation from multiple views, a recurrent
network is able to refine reconstruction overtime. How-
ever, this method models the reconstruction process as a
black box, giving away the essential constraint from multi-
view geometry, such as photometric consistency across dif-
ferent views, which serves as a golden rule to measure
the accuracy of the reconstruction. Although some meth-
ods [28, 29, 16] indeed use multi-view geometry in training
time, no geometric constraints is explicitly enforced during
one-pass inference. As a result, they are not able to opti-
mize for or evaluate on those geometric metrics. This is
in fact a severe drawback compared to geometry-based ap-
proach like the emerging technique of photometric bundle
adjustment (PBA) [3].

In PBA, dense pixel-wise correspondence is established
with the estimated inverse depth map and camera poses, in-
jecting a natural yet strong geometric constraint into the sys-
tem. However this photometric consistency breaks on tex-
tureless regions, so it tends to produce confident results only
on edges with strong image gradients, inferior to the deep
methods which are equipped with dense shape generators.

Hitherto, the central problem to address in our work is,
can we combine both the goodness from the shape prior
offered by deep networks, and multi-view geometric con-
straints to improve results of PBA. In this paper, we pro-
pose to use a deep point cloud generator derived from Fan

et al. [7] to model the shape prior. The resulting point cloud
is thus parameterized by a low dimensional style vector. In
inference, we adopt a PBA-like procedure which jointly op-
timizes style and the camera poses to minimize the photo-
metric consistency cost across multiple views. With this
approach, we are able to inference a dense point cloud re-
construction from a few shots of the object, and yet sticks
to multi-view geometry.

We summarize our contribution as follows:

• Unlike traditional photometric bundle adjustment
which models point cloud as a set of independent
points, we use a deep generative network to associate
point cloud with a low dimensional shape style vector.
This dependency between points provides prior knowl-
edge about the structure of the shapes, and allows dif-
ferentiable bidirectional mapping between shape and
style embedding. As a result, the deep shape prior re-
duces the degrees of freedom (DoF) for optimization,
and allows full 3D dense reconstruction from very few
shots of the object.

• Compared to previous deep methods of shape from
image(s), we are the first to explicitly enforce multi-
view geometry constraints in inference. Therefore, our
method is able to provide accurate camera pose guar-
anteed by the geometric consistency, which is either
unavailable [7, 16, 28, 8, 26, 25] or unreliable [22, 29]
in previous methods.

• We demonstrate that a RGB frame of an object taken
from specific camera pose can be chained back to the
full 3D shape with a differentiable operator, which en-
ables gradient-descent-based PBA over camera poses
and object style during inference with full shape.

1.1. Notation

Vectors are represented with lower-case bold font (e.g.
a). Matrices are in upper-case bold (e.g. M) while scalars
are low-cased (e.g. a or A). Italicized upper-cased charac-
ters represent sets (e.g. S )

To denote the lth sample in a set (e.g. images, shapes),
we use subscript (e.g. Ml). Calligraphic symbols (e.g.
π(x;p)) denote functions which take in a vector or a scalar
(e.g. x) and meanwhile are parameterized by some parame-
ters (e.g. p).

2. Approach

2.1. Overview

In this paper, given an RGB sequence of a camera mov-
ing around a rigid object within limited baseline, we attempt
to recover the full 3D shape of the object, as well as the cam-
era extrinsics of each frame. Our objective is most close to



ඹ

ර

ය



ල

Figure 2: Pipeline of the optimization. (1) Generate shape X with initialized style s. (2) Get Xp0
with the pseudo-renderer

and reproject it with initialized p0 to resample the reference frame. (3) Reproject Xp0
with p0 ◦∆pl to resample the target

frame l. (4) Compute the photometric loss Lph and the silhouette loss LCD. (5) Bundle adjust p0, s and ∆pl by minimizing
Lph or Lph + λLCD. Note that in a scenario where we know the silhouettes of the object inside the frames, the final objective
becomes L = Lph + λLCD as introduced in Section 2.3, and accordingly the computation of 2D silhouette loss is needed.

that of PBA [19, 3], however instead of trying to recover the
inverse depths associated with each pixel in the reference
frame, we seek to reconstruct full 3D shape in the form of
point cloud, untied from the pixels.

We experiment in controlled conditions, where image
sequences are synthesized with a rendering pipeline from
[22], hence we are equipped with the ground truth style and
the camera poses for later use.

The shape is represented as point cloud generated from
a trained shape autoencoder for embedding a repository of
CAD models, where the generator of the autoencoder serves
as a differentiable function mapping from a latent vector in-
dicating object style to a point cloud. After the autoencoder
is trained, a style regressor and a pose regressor are trained
to regress from synthetic images with style and pose varia-
tions to their individual ground truth style vectors and pose
parameters, similar to Zhu et al. [29]. This concludes all the
network training work in our method.

In inference, the overview of our pipeline is shown in
Fig. 2. Given an input image sequence {Il}

L−1
l=0 of an ob-

ject transformed overtime, we treat the first frame (frame 0)
as the reference (or template/source) frame, and attempt to
align all the subsequent L−1 target frames to it. To achieve
this, we optimize for three set of variables: the unique style
vector s for the rigid object, the global 1 camera pose p0 of
the reference frame, as well as the relative camera motion

1Considering we are playing with a CAD repository of aligned meshes,
we define the world frame as one aligned to the axes chosen by the dataset.

parameters from the reference frame to the target frames
{∆pl}

L−1
l=1 . These variables are initialized on the first step

of initialization by running the trained regressors on the ref-
erence frame2.

We will refer to the camera extrinsics as pose for short
in the context. In our paper, for a RGB image I of an ob-
ject with constant style taken from pose p in world frame,
we represent the image as a function of subpixel locations
u = [u, v]T , and parameterized by a style parameter s and
pose parameter p, that is, I(u;p, s) : R2 → R3. For a
point cloud with N points, we use a collection of 3D point
positions X := {xi}Ni=1, where xi ∈ R3.

2.2. Shape Prior

We parameterize the point cloud with a shape prior. The
shape prior G(s) = {xi}Ni=1 is a differentiable deep gener-
ator function outputting a point cloud from a style embed-
ding vector. The shape generator serves as a non-rigid shape
prior over the style space. It embeds the entire set of points
into a latent space, thus a forward pass gives the positions
of every single point, and a backward propagation passes
the gradients of the entire set or a subset of the points all the
way back to the style vector.

The benefit of this parameterization is, 1) it reconstructs
full 3D point clouds from a vector, invariant to viewpoints;

2We also tested with another initiation strategy for style using me-
dian/mean estimation from all frames, no significant difference is ob-
served.



2) it embeds a potentially large set of dense points with DoF
3N into a latent space with relatively fewer dimensions,
reducing the DoF of the optimization problem, yet main-
tains a differentiable one-to-one mapping between the style
embedding and point set; 3) spatial constraints are implic-
itly imposed by the convolutional generator [7] so that the
generated points are glued with neighbours, hence more ro-
bust to noise; 4) gradients of a subset of the generated point
cloud can be back propagated to the style vector, changing
the global shape of the output. We will cover the last point
in detail when we describe the optimization process in Sec-
tion 2.3.

2.3. Inference of Poses and Style Through Joint Op-
timization

Camera Model We follow [29] by utilizing exponential
twist for parameterizing the camera pose in world frame as
well as the relative camera motions between the reference
frame and target frames. Assuming a camera with known
intrinsic matrix K, the projection of a point xi ∈ {xi}Ni=1

under the extrinsic parameters can be written as:

π(xi;p) = K(Rxi + t) ∈ R
2, i ∈ [1, N ] (1)

where for a rotation around unit axis n = [n1, n2, n3]T

for radian φ, the rotation matrix is given by R =
exp ([n]̂ φ) ∈ SO(3), and p = [φnT , tT ]T . [n]̂ is the
skew-symmetric matrix from n, defined in [18]. t ∈ R3

is the translation parameters.

Connecting Shape with Image Given a projection func-
tion of the camera, we are able to project each point in the
point cloud back to the image plane observed from a cam-
era pose. However, one issue arises as we struggles to sep-
arate the truly visible points from those which are either
self-occluded or out of image boundary. To circumvent this
issue, traditional PBA methods either tie each 3D point to a
pixel and attempt to estimate an inverse depth map [19], or
allow 3 DoF for a point but only recovers the set of visible
points from a particular frame [3]. In other words, histori-
cally there have been no attempts to install a full 3D point
cloud for all views by chaining it with each frame. To deal
with this issue, we take advantage of the recent advance-
ment of “pseudo-render” [16], which is a differentiable pro-
jection function from a full 3D point cloud to a depth map
given the camera pose. To achieve this, the “pseudo-render”
projects the point cloud to an up-scaled plane and uses max
pooling over the inverse depth channel to filter out invisible
(occluded) points.

We write the “pseudo-render” as a function which out-
puts a subset Xp consisting of Mp visible points from the
input point set X of size N , given the camera pose p:

Xp := {x̃j}
Mp

j=1 = PS(X;p). (2)

Photometric Consistency and The Optimization Policy
Given an image sequence {Il}

L−1
l=0 and camera model, we

write the optimization objective as the photometric loss be-
tween the reference frame and the subsequent frames, over
point pairs, each consisting of one point visible in p0 and its
corresponding point in target frame l of pose pl = p0◦∆pl:

Lph(p0, {∆pl}
L−1
l=1 , s) = (3)

L−1∑

l=1

Mp0∑

j=1

(
I0
(
π(x̃j ;p0)

)
− Il

(
π(x̃j ;p0 ◦∆pl)

))2

where {x̃j}
Mp0

j=1 = PS(G(s);p0), M is figured out by
the pseudo-renderer, dependent on s and p0. And the pro-
jection function with pose composition can be defined as:

π(x̃j ;p0 ◦∆pl) = K(∆RlR0x̃j +Rlt0 +∆tl) (4)

assuming we write p0 = [φ0n
T
0 , t

T
0 ]

T , ∆pl =
[∆φln

T
l ,∆tTl ]

T , and R0 = e[n0 ]̂ φ0 , ∆Rl = e[nl ]̂ ∆φl .
The optimization policy of the photometric loss over all

three set of variables is listed in the following Algorithm 1.
We write the trained pose regressor as Rp(I0) = p0 and
style regressor as Rs(I0) = s, and we set the convergence
threshold for Lph to δL.

Algorithm 1 Optimization of the photometric loss

1: procedure LPH(p0, {∆pl}
L−1
l=1 , s)

2: p0 ← Rp(I0)
3: s← Rs(I0)
4: while Lph > δL or step < maximum iterations do
5: for l = 1, 2, . . . , L do ◃ in parallel
6: ∆pl ← L-BFGS update on ∆pl

7: p0 ← L-BFGS update on p0

8: s← L-BFGS update on s

9: return {p0, {∆pl}
L−1
l=1 , s}

It is worth mentioning that unlike traditional photomet-
ric bundle adjustment, we do not use Gauss-Newton opti-
mization procedure here, because we are no longer able to
calculate the warp Jacobian efficiently due to the non-linear
and hidden relationship between style vector s and point
cloud coordinates xi. Instead, we adopt a gradient-based
optimization approach, e.g. SGD, LBFGS [17]. The gradi-
ents: ∂L/∂s and ∂L/∂p are efficiently calculated through
back propagation with deep learning framework like Ten-
sorflow [1].



In addition, it is interesting to note how the shape prior
acts in the optimization process as compared with directly
optimizing the set of visible points. Considering only a
small fraction of M points in the entire point cloud receives
gradients because the rest do not contribute to the loss func-
tion visually, our approach using the shape prior is able to
back propagate the gradients of the partial point cloud back
to the style vector s. After the update is made upon s, a
forward pass through the generator will change the posi-
tions of all points, including the invisible ones, thus mold-
ing both the visible and invisible parts. Moreover, changes
are smoothed over neighbouring points owing to the con-
volutional point cloud generator. This mechanism can also
be viewed as search through the learned style space. In con-
trast, in traditional PBA (e.g. Alismail et al. [3]) the position
of each visible point is independently optimized, without a
shape prior to chain them together, let alone recovering or
constraining the invisible ones. We show visual compar-
isons between optimizing over the style vector and directly
optimize the set of initialized points X in Fig 7.
Silhouette Constraints with 2D Chamfer Distance In
some cases, the photometric loss is not sufficient enough
for constraining the shape, for example the optimization can
plunge into a degenerate solution where all points are blown
out of the frame, giving zero photometric loss, or the shape
“shrink” to its center in an effort to avoid the large errors
on surrounding edges. In this case, we propose to introduce
another constraint, assuming we know the silhouette for the
object in each frame (they can easily be acquired with mod-
ern instance segmentation methods).

For the lth frame, we acquire the set of pixel coordinates

inside the silhouette Ul1 = {uk ∈ R2}
KPl

k=1 . The set of

projected visible point is then written as Ul2 = {uj}
MPl

j=1 =

{π(x̃j)}
MPl

j=1 . Then the silhouette loss for all frames is the
2D Chamfer Distance between two sets of pixel locations:

LCD(p0, {∆pl}
L−1
l=1 ,u) = (5)

1

L− 1

L−1∑

l=1

( ∑

uk∈Ul1

min
uj∈Ul2

||uk − uj ||
2
2

+
∑

uj∈Ul2

min
uk∈Ul1

||uj − uk||
2
2

)

And the actual loss to optimize is weighted combination
of Lph and LCD:

L = Lph + λLCD, (6)

where λ serves as the weighting parameter.
In the experiment, we report the performance of using

photometric loss alone, as well as using combined loss.
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Figure 3: Success rate of pose error and style error under
varying thresholds. We report results of three cases: (1) at
initialization (dashed blue), (2) after optimization with pho-
tometric loss alone (solid yellow), and (3) after optimization
with photometric loss and silhouette loss combined (solid
red).
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Figure 4: Pose and style errors over different input se-
quence lengths.

3. Experiments

3.1. Data Preparation

In evaluation, we utilize rendering engine Blender to
synthesize object-centric RGB sequences with camera mo-
tions so that we are equipped with ground truth shape and
pose for quantitative evaluation. We exploit the existing
ShapeNet dataset [4] for a large collection of mesh-based
CAD models in canonical pose for learning the shape prior
of styles. Particularly, we select the ’car’ category with
5,996 training and validation samples combined, and 1,500
samples for testing. For each aligned model, we uniformly
sample 24,576 on the surface to give a dense point cloud.

In training the style and pose regressors, we apply cam-
era motion to the scene. For each model, we render 200
samples with randomly sampled camera poses over the pose
space, so in the end our training set consists of 1,199,200
image-shape pairs, with image resolution of 128×128. We
also randomize the lighting conditions including environ-
mental lighting by placing random number of lights with
varying intensity and positions. Lambertian reflectance
is imposed for better approximation to real-life statistics
and the assumption of photometric consistency for points
on the surface. An infinite textured carpet is laid on the
ground to facilitate comparisons with feature-point-based
traditional SfM methods (although a textured background is



Errstyle {pl} mean error Lph LCD

Zhu et al. [29] 3.43 5.44 - 1.20×105

Ours (initialization) 2.79 14.17 843.56 1.12×105

Ours (after optimization) 2.70 4.24 197.37 7.64× 103

Zhu et al. [29](1,536 points) 3.82 - - -

Fan et al.[7] (1,536 points) 3.91 - - -

Table 1: Quantitative evaluation on various metrics. The error in p0 and ∆pl are reported in combination as mean error
of {pl}

L−1
l=0 of all squences. Our method and single image reconstruction (Zhu et al. [29]) use a point cloud size of 24,576.

Comparisons with [7] are carried out using a sparser target shape of 1,536 points.

not required in our method considering we are using object-
centric photometric loss).

To evaluate the optimization pipeline, we render one se-
quence for each model, with randomized starting pose p0,
and then apply rotation to the camera around a random sam-
pled axis to create a sequence of 15 frames, each of 2◦ rota-
tion from its predecessor. In this case, each sequence covers
camera motion of 30◦ in rotation.

3.2. Style and Pose Initialization

We first train a TL-embedding network with adapted ar-
chitecture from Zhu et al. [29], including a style autoen-
coder with shapes in canonical poses, and a pose regressor
plus a style regressor to map an input image with sampled
pose and style to its ground truth. Before we begin to opti-
mize the style and camera poses for an input sequence, we
feed the first image (known as the reference frame) into the
trained style and pose regressors to acquire a reasonable ini-
tialization for s and p0. The initial values of {∆pl}Ll=1 are
all set to zeros.

The initialization step can be viewed as single image
style and pose prediction on the reference image. We give
the quantitative results for all frames of all testing sequences
in Table. 1, between two scenarios: 1) (row 1) predict-
ing style and pose for all frames independently like Zhu et

al. [29]; 2) (row 2) using initialized parameters based on
the first frame. The loss in style Errstyle measures the 3D
Chamfer Distance between the ground truth point cloud in
canonical pose Xgt = {xgt i}Ni=1 and the generated shape
from the style vector X = {xi}Ni=1 = G(s):

Errstyle(Xgt,X ) = (7)

1

N

( ∑

xgt∈Xgt

min
x∈X

||xgt − x||22 +
∑

x∈X

min
xgt∈Xgt

||x− xgt||
2
2

)

To give readers an idea how our single-image-based style
initialization performs as compared to the state-of-the-art,
we also give a comparison with [7] on reconstructing a point
cloud from each single frame of the sequences in the last

two rows of Table. 1. To be consistent with [7] whose archi-
tecture only allows reconstruction of 1,536 points, we make
a variant of our architecture (details in Appendix I), and re-
train both methods on our synthetic test samples of vary-
ing style and pose, and measure their testing results w.r.t.
Errstyle. We show in Table. 1 that our architecture gives
comparable performance in offering an initialization in style
compared to [7], but we have demonstrated the ability to
further optimize both style and poses through our pipeline
and reach much finer results as also shown in Table. 1.

3.3. Quantitative Evaluation of the Optimization
Pipeline

Our optimization pipeline is evaluated in three cases: op-
timize the photometric loss Lph, 2D Chamfer Distance LCD

separately, and optimize the combined loss L = Lph +
λLCD. In our experiment we set the weight λ to 0.01.
We measure two metrics in Fig. 3 with success rate un-
der threshold: the error in pose based on geodesic distance
over the manifold of rotation [23](the smallest rotation an-
gle from the ground truth pose to the estimated one), the
error in style Errstyle between the generated point cloud in
canonical pose with the sampled ground truth point cloud
of the CAD model.

We also report the average performance at convergence
in Table. 1 (row 3). The results are averaged over all frames
in the testing sequences.

Another hyper parameter in our experiment is the num-
ber of views L in a sequence. We show in Fig. 4 how does
the number of views affects the metrics. We experiment
with 2, 5, 10, 15 views, respectively covering a range of 4,
10, 20, 30 degree of camera rotation. One view corresponds
to the single frame initialization. We conclude that as more
observation taken into the optimization, both error generally
decrease. An exception is the peak of style error in 2 views
where the optimization get error-prone in face of extremely
small camera motion. Also as number of views reach 15,
the camera motion between the first and last frame becomes
larger, and accordingly harder to optimize.
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Figure 5: Demo of our optimization pipeline on 4 sample sequences (only showing the reference and last frame), and
comparisons with results from [7, 5, 9]. For each optimization step of each sample, we show in the cell the resampled points
in the reference frame (upper left), resampled points from target frame (upper right), and the photometric residual between
the former two (bottom right). We also give results from Fan et al. [7], 3D-R2N2 [5] and openMVS [9] in the last 3 rows.



3.4. Qualitative Comparisons and Analysis

We show in Fig. 5 step-by-step results of our optimiza-
tion pipeline at initialization, and after each step of alternate
optimization of poses and style. Take the first sequence of
van for example: frame 15 aligns immediately back to the
reference frame with a big jump after the optimization of
∆p15. In the second step the pose of reference frame p0 is
slightly adjusted for better alignment. In the end, s is im-
proved to bring about a noticeable change in the shape of
the van (e.g. the original flat head is adjusted to a square
one to better fit the images).

We also give visual comparisons with Fan et al. [7], [5]
and multi-view stereo method openMVS[9] on the samples.
Particularly, we show reconstruction per frame in canonical
camera for [7], the final output from the recurrent network
in canonical pose after feeding in the entire sequence for [5],
and the output shape under its estimated camera pose for
[9]. During our evaluation with openMVS [9], openMVS
tends to fail when there are not enough input frames. It
breaks frequently with an input sequence of 15 frames so we
use 45 frames instead. Also this method relies heavily on
feature correspondence. Therefore we use high-resolution
inputs of 512×512 to enable reasonable amount of feature
point detected.

We observe (1) Fan et al. [7] gives pose-less shapes with-
out much details, and consequently do not reproject back to
the frames; (2) 3D-R2N2 [5] outputs voxelized shapes in
canonical pose with error-prone styles; (2) openMVS fails
on certain samples, while for the rest it produces sparse
points at edges only, and it suffers from occasional problem-
atic camera estimation. We are not able to benchmark with
3D-R2N2 or openMVS considering the difference in shape
representation of the final product among those methods.

Analysis on two options of losses. In Fig. 6 we give an ex-
ample of using three options of losses. As we may observe,
using photometric loss can be problematic in that the opti-
mizer gives lower photometric error by confidently cutting
out some parts (parts in the windshield region in this case).
With the additional constraint on silhouettes a better fit is
reached.

Analysis on using the shape prior. As is shown in Fig. 7,
if we directly optimize for the locations of visible points,
the shape is noticeably degraded. However by optimizing
the latent style vector, the style sticks around in the space of
cars, generating a more smooth car-like shape.

4. Conclusion

In this paper we propose the method which combine geo-
metric consistency and deep shape prior in the task of pho-
tometric bundle adjustment. More particularly, we devise
the pipeline which takes in a full 3D point cloud implic-
itly parameterized by a style embedding, and jointly opti-

Input frame

overlaid overlaid

Figure 6: Demo of using two options of loss in optimiza-
tion. The resampled points is overlaid in blue on the frame
to demonstrate the silhouette matching.

Input frames

Figure 7: Demo of direct optimization (Lph + λLCD) of
point cloud positions (left) and optimization style through
the shape prior (right).

mize the camera poses and the style vector based on pho-
tometric consistency and silhouette matching. We eval-
uate our method on object-centric video sequences both
quantitatively and qualitatively, and offer comparisons with
methods of SfM and shape-from-image(s). We are able to
demonstrate our pipeline is capable of reconstructing an ac-
curate dense point cloud as well as camera poses from video
sequences of very few frames.
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Supplementary Material

Object-Centric Photometric Bundle Adjustment with Deep Shape Prior

1. Appendix I.a. Network Architectures

We denote each fully-connected layer fc(d) by its output
dimension d, and 2D convolution layer by conv2D(k, c, s)
representing kernel size of k, strides of s across two spa-
tial axes, and c channels. A reshape layer is represented as
reshape(output size).

1.1. The Shape Prior and Style and Pose Initializa-
tion

Encoder and Generator for Aligned Shapes The shape
prior is trained as the generator of aligned points clouds
sampled from ShapeNet [1]. The aligned shape encoder
takes as input an 24576×3 tensor, and uses an encoder of
the identical architecture as [5] to output an embedded fea-
ture of 1,024 dimension indicating style of the input shape,
except that we take out the transformation layers consider-
ing transformation invariability should not and need not be
picked up by the encoder. The generator is motivated by
[2] with the following two stream of layers: (1) fc(2048),
fc(4096), fc(8192), fc(8192×3), reshape(8192×3). (2) re-

shape(4×4×4×64), conv2D(3, 256, 1), conv2D(3, 128, 1),
conv2D(5, 64, 2), conv2D(5, 64, 2), conv2D(5, 32, 2),
conv2D(5, 3, 2), reshape(16384×3). The outputs from two
streams are then concatenated together to form an output
point cloud of shape 24576×3.

Layers in the encoder are batch batch normalized except
the first convolution and last layer. LeakyReLU [4][3] is
the rectifier for all layers except the output layer which uses
tanh.

Image to Style/Pose Regressors We follow [6] to build the
two architectures for style and pose regressors. The network
parameters are adjusted to accommodate an input image of
size 128×128.

The two regressors have identical architecture of con-
volution layers: conv2D(3, 64, 2), conv2D(3, 96, 2),
conv2D(3, 128, 2), conv2D(3, 192, 2), conv2D(3, 256, 2).
For the style regressor, an fc(1024) connects the last convo-
lution layer to the style parameters. For the pose regressor,
fc(3) is used instead. All but the first convolution layers are
batch normalized, and rectified with LeakyReLU.

1.2. The Architecture for Smaller Point Cloud Out-
put

We also design a smaller network outputting a point
cloud with 1,536 to enable comparison with Fan et
al.[2]. The two streams of the generator are modi-
fied to: (1) fc(2048), fc(1024), fc(768), fc(768×3), re-

shape(768×3). (2) reshape(4×4×4×64), conv2D(3, 256,
1), conv2D(3, 128, 1), conv2D(5, 64, 2), conv2D(5, 3, 2),
reshape(768×3).

2. Appendix I.b. Training Details

Both the aligned shape autoencoder and the style/pose
regressors are trained with Adam optimizer at an learning
rate of 1e-5 and batch size of 20.

3. Appendix II. More Samples of Our Method

We show in Fig 1 more samples of sequences before and
after optimization. For each sequence we show in the first
row the input frames, in the second row the reprojected
points (only those visible from the reference pose but not
necessarily from the target poses which is why we see miss-
ing points in the target frame reprojections) at initialization
and in the third frame the the reprojected points at conver-
gence.

A demo video of the optimization steps for the
first 10 sequences of the test set can be found at
demo 10sequences.mp4.zip.

1
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Figure 1: Results of our optimization pipeline on more sample sequences .
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Figure 1 (cont.): Results of our optimization pipeline on more sample sequences .
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Figure 1 (cont.): Results of our optimization pipeline on more sample sequences .


