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Abstract— We present a method for localization of Unmanned
Aerial Vehicles (UAVs) which is meant to replace an onboard
GPS system in the event of a noisy or unreliable GPS signal. Our
method requires only a downward-facing monocular RGB cam-
era on the UAV, and pre-existing satellite imagery of the flight
location to which the UAV imagery is compared and aligned. To
overcome differences in the image capturing conditions between
the satellite and UAV, such as seasonal and perspective changes,
we propose the use of Convolutional Neural Network (CNN)
representations trained on readily available satellite data. To
increase localization accuracy, we also develop an optimization
which jointly minimizes the error between adjacent UAV frames
as well as the satellite map. We demonstrate how our method
improves on recent systems from literature by achieving greater
performance in flight environments with very few landmarks.
For a GPS-denied flight at 0.2km altitude, over a flight distance
of 0.85km, we achieve average localization error of less than
8 meters. We make our source code and datasets available to
encourage further work on this emerging topic2.

I. INTRODUCTION

The commercial and consumer use of UAVs outdoors
has grown exponentially in the last few years. UAVs now
find use in search and rescue [1], [2], industrial inspection
[3], [4], land surveying and mapping [5], [6], precision
agriculture [7], monitoring of remote environments [8], [9],
the study of wildlife populations [10], and many more.
Nearly all applications require precise latitude and longitude
estimates of the UAV during flight, with some also requiring
accurate altitude or 6 degrees-of-freedom (DoF). This level
of localization may not be available in GPS-denied or GPS-
spoofed situations, and requires the use of often costly GPS
hardware and IMUs. A vision-based system that achieves
comparable accuracy would be beneficial as it would lower
the cost of UAV platforms, and could replace GPS when
there are signal issues. This idea is further motivated by the
fact that there is ample free, GPS-aligned, satellite imagery
covering many parts of the globe available online. This
satellite imagery can provide a map prior for a flight, against
which we can perform template matching to localize.

The main challenge of using satellite imagery as a map
prior is overcoming the differences in imaging conditions
between the satellite images and the incoming video stream
from the UAV. An example of this is shown in Fig. 1. Since
the UAV images are captured at much lower altitude than the
satellite map, there is a larger perspective effect of structures
higher than the ground plane. The correspondence of typical
feature descriptors like SIFT [11], which are commonly used
in the remote sensing community for satellite-to-satellite
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Fig. 1. A typical example of alignment between UAV imagery (left) and
a satellite image (right). Notice differences such as seasonal variation of
vegetation, shadow angles, perspectives of buildings, presence of vehicles,
and variations due to different imaging hardware. Our goal is overcoming
these variations to enable precise UAV localization.

image matching [12], [13], [14], usually fails with such
perspective differences. Another challenge can come from
temporal aspects, such as seasonal effects, time-of-day, and
the removal or addition of buildings or cars. Overcoming
these temporal aspects has been attempted using learned,
sparse descriptors in [15]. However, sparse descriptors are
still reliant on local texture and inherently cannot generalize
to more rural, low texture flight environments.

Prior Work. There have been a few attempts in recent
literature to develop a full UAV localization system based
on satellite image matching. In [16], the authors use HOG
features for alignment between UAV imagery and the map,
making their approach reliant on well-defined, temporally
consistent texture such as buildings and roadways. In [17],
the authors accomplish alignment using a mutual information
metric. They show the method working only on a UAV
flight over a textured urban environment, and the satellite
map they use is photometrically very similar to the UAV
imagery captured. In [18], the authors develop a complex
pipeline for alignment which includes SIFT matching and
semantic segmentation of buildings. This makes their method
heavily reliant upon the presence of texture, as well as on
the photometric similarity of UAV images and the map. They
must also train their neural network semantic segmentation
on data extracted from the exact location and with similar
imaging qualities as used at test time. To give an idea of
the performance of these systems, each achieves average
localization error of less than approximately 10 meters across
flight distances of between 300-1500 meters, and at altitudes
of 100-300 meters. All previous work makes the flat-world
assumption in order to parameterize motion using the planar
homography, a model that we will also use.

Contributions. We show through experimentation that
our method can achieve comparable or better performance
than prior work, with three important improvements. First,
our method can generalize from urban environments to



challenging low-texture rural datasets. Second, though our
method is based on neural networks, we train only on freely
available satellite imagery, and not on any data from the
UAV used at test time. Third, we introduce an optimization
over the pose of the UAV at all frames, which incorporates
constraints from visual odometry as well as the satellite
map alignment, allowing accurate localization even at UAV
frames which are not directly compared with the map.

Overview. In general, our method involves three steps.
First, we perform visual odometry to determine initial esti-
mates of motion parameters. Next, we compare a subset of
recent frames to the satellite map to geolocalize those frames
(described in Section II). Finally, we refine the geolocalized
pose of all frames using a joint optimization between frame
odometry and map alignment (described in Section III).
In Section IV, we provide localization results in an urban
environment, and in a rural location with few landmarks.

II. ALIGNING SATELLITE IMAGES

For the task of aligning UAV images with satellite images,
we choose to employ a recently introduced method in which
a deep CNN representation is learned for direct alignment
[19], [20]. We hypothesize that features can be learned
which are effective for aligning satellite imagery and UAV
images under many different imaging conditions such as
seasonal changes, time-of-day, perspective differences, and
the addition or removal of buildings or other structures. We
believe direct alignment using all image pixels is an effective
choice as we can utilize the global texture of an image when
performing alignment, which has been shown important for
aligning low texture imagery [21]. Most importantly, we
show that using this method allows us to learn features only
from satellite imagery that is freely available online, and not
from imagery from a particular UAV or location used at test
time.

A. Direct Alignment with Learned Features

The network architecture in both [19] and [20] consists
of two fully-convolutional neural networks in parallel with
the same convolutional weights, through which the images to
be aligned are passed. After the convolutional network, the
feature images are passed into a differentiable implemen-
tation of the Inverse Compositional Lucas-Kanade (ICLK)
algorithm [22]. Loss functions are designed in order to learn
the weights of the convolutional layers, such that the feature
images passed to the ICLK layer are as photometrically
similar as possible. [20] expands on this architecture with
a coarse-to-fine approach, learning separate features at each
coarseness level. In [19], the authors fine-tune AlexNet
convolutional filters, while in [20] they have enough data
to train a network from scratch.

For our implementation, we have chosen to use the output
features of the 3rd convolutional block of the VGG16 net-
work [23], and fine-tune the weights only in the 3rd block.
We choose the 3rd block based on the known generalizibility
characteristics of mid-layer features in large image recon-
gition neural networks [24]. We show that only a limited

amount of satellite data is needed to effectively learn features
for alignment. We implement the ICLK layer using full
projective alignment with homography, with the geometric
corner loss function described in [20].

B. Training

To fine-tune features suitable for aligning satellite imagery
and UAV imagery, we predict that only a small, representa-
tive batch of satellite imagery is necessary. Therefore our
training data is gathered from the imagery available on the
United States Geographical Survey Earth Explorer website3.
We gather data from a geographical area of 5.9km by 7.5km,
in New Jersey, USA. Some representative images from this
dataset are shown in Fig. 2. We chose the location for the
fact that it has an even mix of urban, suburban, and rural
imagery, capturing low and high texture. The imagery is
gathered during the years 2006, 2008, 2010, 2013, 2015,
and 2017, across Spring, Summer and Fall. In total there are
10 large images, each 7582×5946 pixels at a resolution of
1 meter per pixel.

During training, we dynamically create training pairs by
extracting random patches from images in the New Jersey
Dataset. We create a training batch by randomly choosing 2
of the 10 large images, and then choosing a random latitude,
longitude, altitude, and compass heading for extracting a
patch from both images. Keeping one of the patches static,
we warp the other patch using random projective warp
coordinates. We then perform the forward pass in the network
using the created training batch, and update the convolutional
weights by backpropagating from the value of the corner
loss across the training batch. Further details can be found
in Section V.

C. Testing

We reserve 20% of the geographical area from the New
Jersey Dataset for testing. This allows us to test the general-
ization of the features learned, for an unseen area of the map.
The result of this test is shown in Fig. 3. This test is indicative
of the generalization performance of our learned features,
for aligning satellite imagery. We make the assumption that
learning features that are robust between temporally varying
satellite images, is a similar task to learning features that
are robust between a satellite image and imagery from a
high-altitude UAV. However, the testing of this hypothesis
comes in the localization experiments in Section IV. We
find impressive generalization to UAV imagery, despite the
relatively small amount of training data.

III. POSE PARAMETER OPTIMIZATION

With the method of aligning UAV imagery to satellite
imagery shown in Section II, we have one part of the whole
system. For some applications, this alignment capability may
be enough on its own. In the previous works on these systems
[16], [17], [18], finding a suitable method of alignment is the
main focus, be it mutual information, SIFT, HOG, semantic
shape matching, etc.

3https://earthexplorer.usgs.gov/



Fig. 2. Some examples from the New Jersey alignment training dataset.
Source image patches (top) and their corresponding template images (bot-
tom) are taken from separate large orthographic satellite images covering
an area of 5.9km by 7.5km. The dataset contains many images from both
urban locations and low-texture rural locations.

Fig. 3. Testing learned features for the task of ICLK image alignment.
We compare our method (blue) with standard ICLK on zero-mean, unit
variance normalized image pairs (red), using vanilla, untrained VGG16
conv3 features (yellow), and an implementation of SIFT+RANSAC align-
ment (green). No-op (purple) is the corner error if no attempt at alignment
is made. We report the corner error as a percent of image width; having
less than 3-4% in this metric results in misalignment that is usually visually
imperceptible. We see that for this dataset, we are able to learn features
with less than 4% error for nearly 90% of image pairs. This is most
notably compared to a representative sparse, feature-based approach such
as SIFT+RANSAC, which is unable to handle the differences in imaging
conditions and achieves less than 4% error on only 30% of the testing
dataset (for SIFT implementation details, refer to Section V).

However, in the Simultaneous Localization and Mapping
(SLAM) literature, a common concept is optimizing over
all the pose parameters throughout an image sequence.
Techniques such as bundle adjustment or pose graph opti-
mization attempt to optimize the pose of the camera and/or
landmarks as the camera traverses an environment, as in
[25], [26], [27], [28]. Specifically, we draw inspiration from
the recent introduction of photometric bundle adjustment,
which optimizes directly on pixel intensity [29], [30]. In
our case, we optimize on the Sum of Squared Differences
(SSD) between pixel intensities of temporally adjacent UAV
frames, as well as the SSD between (deep feature extractions
of) UAV frames and the satellite map. The primary benefit
of this approach is that it allows us to precisely localize the
UAV at all frames, using only a smaller subset of frames to
match to the satellite map.

A. Formulation

Our goal is to obtain accurate, absolute pose of the UAV
at any frame F during the flight sequence. We make the flat
world assumption and parameterize the motion of the UAV in
terms of planar homographies with respect to the flat world.
Assuming we have a satellite map that is aligned to GPS

coordinates, then the absolute pose of the UAV at any frame
can be encoded in a homography relating the satellite map
image to the current frame, which we call HF

abs. Then, the
goal is to estimate HF

abs for all frames.
We assume the position of the UAV is approximately

known at the time of capturing the initial frame F = 1.
This is a reasonable assumption in applications where the
approximate take-off position is known, or where a single
GPS data point is given, before beginning GPS-denied flight.
There is an absolute homography H1

abs relating the initial
view of the UAV to the satellite map image at frame
F = 1, whose parameters can be determined based on the
approximate heading and GPS location of the UAV. As the
UAV moves, each frame F is related to the last frame F −1
by a relative homography HF

rel computed using image pairs
from the UAV (visual odometry). Therefore, the absolute
homography relating the view from the UAV at frame F
to the satellite map is the composition of the intial absolute
homography H1

abs with all relative homographies up to frame
F :

HF
abs = HF

rel ·HF−1
rel · ... ·H

2
rel ·H1

abs (1)

We define certain frames throughout the UAV sequence
as template frames T , to which other temporally adjacent
frames are aligned. We define visibility neighborhoods V
around each template, which contain the frames adjacent to
T . V should be chosen so that there is sufficient overlap
between all frames in V with T so as to allow direct
registration such as with Lucas-Kanade. The precise choice
of template frames and visibility neighborhoods depends
on many characteristics of the particular flight hardware
and the speed of the vehicle, and must be tuned for a
given application. A graphical depiction of the optimization
variables is shown in Fig. 4.

To align with the map, we extract the deep feature rep-
resentation of all T using our trained convolutional layers
from Section II. We also extract the patch from the map M
which corresponds to T based on the current estimate of
all motion parameters in the sequence, and extract the deep
features of this map patch. Then, we simultaneously optimize
for the motion parameters based on the minimization of
error between all templates T and the images within their
corresponding visibility neighborhoods V , as well as the
error between the deep feature extractions of the templates
T and the map M . We express this minimization objective
as:

min
p

∑
k

∑
F∈V (k)

||IF (W (x; pF,k))− Tk(x)||22+

λ
∑
k

||Mφ(W (x; pM,k))− Tφk (x)||22
(2)

Where k is the set of frames which are templates, IF is
the UAV image at frame F , Mφ and Tφ are deep feature
extractions of the map and template respectively, pF,k is the
composition of motion parameters from frame F to template



Fig. 4. Visualization of the parameters for optimization. H1
abs parame-

terizes the approximately known initial pose of the UAV, at the time that
GPS-denied flight begins. Initial estimates of HF

rel are obtained via visual
odometry. This example uses a single template T3 and single corresponding
visibility neighborhood V , but many templates with overlapping neighbor-
hoods can be used in practice. The template is the only UAV frame which
is compared against the satellite map M .

k, and pM,k is the composition of motion parameters from
the satellite map M to the template k. We use the notation
I(W (x; p)) to mean sampling an image I at image coordi-
nates x that have been warped with warping function W ,
using a projective transformation parameterized by p ∈ R8.
λ is a tunable parameter used to weight the contribution of
the map alignment; if it is zero, the optimization does not use
the satellite map at all, but optimizes the motion parameters
based only on UAV imagery (visual odometry).

B. Derivation of Motion Parameter Update

The minimization in (2) can be solved using the iterative
Gauss-Newton method. We start by defining pf of a par-
ticular relative homography in the UAV sequence Hf

rel that
we optimize with respect to. We rewrite both pM,k and pF,k
as functions of pf with the addition of a small perturbation
∆pf to the motion parameters:

∑
k

∑
F∈V (k)

||IF (W (x; pF,k(pf + ∆pf )))− Tk(x)||22+

λ
∑
k

||Mφ(W (x; pM,k(pf + ∆pf )))− Tφk (x)||22
(3)

Linearizing with respect to pf yields

∑
k

∑
F∈V (k)

||JI∆pf + rI ||22 + λ
∑
k

||JM∆pf + rM ||22 (4)

where

JI = ∇IF
∂W

∂pF,k

∂pF,k
∂pf

, JM = ∇Mφ ∂W

∂pM,k

∂pM,k

∂pf
(5)

rI = IF (W (x; pF,k(pf )))− Tk(x) (6)

rM = Mφ(W (x; pM,k(pf )))− Tφk (x) (7)

We note that ∂pF,k

∂pf
is nonzero only if f ∈ V (k) and

|f−k| ≤ |F−k|, and ∂pM,k

∂pf
is nonzero only if f ≤ k. Finally,

taking the derivative w.r.t. ∆pf , setting the minimization
equal to zero, and solving for ∆pf yields:

∆pf = −H−1
∑

k

∑
F∈V (k)

JTI rI + λ
∑
k

JTMrM

 (8)

where

H =
∑
k

∑
F∈V (k)

JTI JI + λ
∑
k

JTMJM (9)

The optimal update ∆pf for all relative homographies
Hf
rel can be computed in parallel using this iterative solution,

with the update at each iteration pf ← pf + ∆pf . The
iteration continues until the maximum value of ∆pf across
all frames is below a certain threshold.

The optimization can be applied in a sliding-window
or a batch fashion. A sliding-window approach would be
more suitable for applications with a requirement for online
localization. We present experiments using a sliding-window,
with more details in the following section.

IV. LOCALIZATION EXPERIMENTS

As few attempts have been made at UAV localization
systems similar to the one presented here, there are no freely
available datasets or baseline implementations. A proper
dataset for this task consists of a UAV sequence using a
monocular, downward-facing camera, with precise ground
truth pose with respect to the Earth, and an accompanying
globally aligned satellite image of the flight location. The
altitude of the UAV must also be such that the flat-world
assumption can reasonally be made. Of the few previous
works [16], [17], [18], none have made their datasets or
source code publicly available for comparison. Therefore we
gather two datasets, in part using UAV imagery from the
free datasets offered from the senseFly professional drone
mapping company4. The first dataset is captured overhead
the Swiss village of Merlischachen, at an altitude of 0.2km,
over 0.85km flight distance. This is an urban environment
similar to those used in all prior works, with ample texture
and landmarks such as buildings and roadways. The second
dataset is more challenging, captured overhead a rural gravel
quarry at 0.22km altitude and flight distance of 0.61km. This
location offers substantially less texture and landmarks for
alignment. We use this dataset to showcase the capabilities of
our system to align with low-texture imagery, an advantage
over past approaches.

A. Village Dataset

Some example UAV frames from the Village dataset and
an overview of the flight are in Fig. 5. The UAV used is
the senseFly eBee drone, equipped with a downward facing
Canon IXUS 125 HS camera. We extract the GPS-aligned
satellite map from Google Earth Pro. The UAV imagery
was captured in April, 2013, and the satellite imagery in
May, 2012. High-accuracy RTK GPS (latitude, longitude,
and altitude) is included in the metadata of each UAV frame
in the dataset. We process the GPS metadata of the initial

4https://www.sensefly.com/education/datasets/



frame of the dataset in order to form H1
abs, the homography

relating the initial UAV pose to the satellite map, as described
in Section III-A. To form initial estimates of the frame-to-
frame relative motion HF

rel, we use SURF [31] feature extrac-
tion and correspondence to estimate homographies between
UAV frames. We find SURF provides odometry performance
comparable to other popular sparse-feature based methods,
and is thus used as a representative baseline.

With estimates for H1
abs and HF

rel, we solve for the optimal
motion parameters of the UAV using (8). For the Village
dataset, we find empirically that using a sliding-window
approach for the pose optimization produces the lowest
average localization error. This is due to the low frame-rate
of the UAV dataset, where there is as low as 50% frame-
to-frame overlap. This makes the composition of HF

rel from
the SURF odometry inaccurate when predicting pose after
many frames. It is this predicted position which is used to
extract patches from the map M in the optimization to use
for alignment, but if these patches do not have significant
overlap with the UAV frames then the optimization fails. We
use a sliding-window containing 4 UAV frames, of which
the 2nd and 4th frame images are the templates T , with
V (2) = 1, 3 and V (4) = 3 as the visibility neighborhoods
of the two templates. This window is slid forward by two
frames after the optimal parameters are found. We start with
the first 4 frames of the video, and progress through the
whole sequence. With this sliding window, only half of all
video frames are directly compared with the map.

After solving for the optimal motion parameters, we
convert them to GPS coordinates (latitude, longitude, and
altitude) and plot error from ground truth, versus SURF
odometry. Localization results on the Village dataset are
shown in Fig. 6, and some example alignments in Fig. 7.
Despite relatively little training data as described in Section
II, the learned features generalize well to the unseen UAV
imaging conditions and satellite map used in both the Village
and Gravel Pit datasets. We find other alignment methods
simply do not come close to proper alignment on these
datasets, including ICLK on normalized images, or ICLK
on vanilla conv3 VGG16 features. SIFT produces very few
(3 to 5), if any correct correspondences between UAV images
and satellite images, not enough for effective RANSAC
estimation.

B. Gravel Pit Dataset

Example frames from the Gravel Pit dataset are shown
in Fig. 8, along with a flight overview. The same UAV and
camera are used from the Village dataset. The UAV imagery
was captured in April, 2013, and the satellite map we extract
is from November, 2014. We chose this dataset to showcase
the abilities of our method of alignment for use on very
low-texture environments lacking landmarks. The effects of
seasonal variation are more pronounced in this dataset due
to increased vegetation as well.

We repeat the process from the Village dataset for ex-
tracting initial motion parameter estimates. For the motion
parameter optimization, we experiment by eliminating the

Fig. 5. (a) Overview of the Village dataset flight path. (b) Some examples
of UAV frames (right) and their corresponding satellite map patches (left)
for the Village dataset.
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Fig. 6. Our results on the Village dataset. Results labeled 2D Euclidean
are error distances measured in the x-y plane. Markers represent template
frames. The average 2D euclidean error of our method is 7.06m. The
average altitude error of our method is 8.01m. The ground truth altitude
of the UAV for the entire sequence is approximately 0.2km. We find that
alignment methods including SIFT+RANSAC or ICLK on vanilla VGG16
conv3 features fail to align UAV images with the satellite map for this
dataset, and thus do not improve on the error from SURF odometry.

Fig. 7. Some examples of the alignment capabilities of our system on
the Village dataset, which occur during optimization of motion parameters.
Crops from the satellite map (top) are warped and aligned (middle) with
the corresponding UAV imagery (bottom). The red rectangle is static in all
images, allowing the reader to visually compare aligned landmarks.



Fig. 8. (a) Overview of the Gravel Pit dataset flight path. (b) Some
examples of UAV frames (right) and their corresponding satellite map
patches (left) for the Gravel Pit dataset.
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Fig. 9. Our results on the more challenging, low texture Gravel Pit dataset.
The average 2D euclidean error of our method is 25.00m. The average
altitude error of our method is 7.70m. Precise x-y localization is difficult
on this dataset due to low texture, leading to ambiguous alignment. However,
no other methods we try for UAV-map matching are able improve on the
odometry error as ours has.

inclusion of the odometry term in (2) and using only the
minimization of the map with templates. Further, we use
a sliding-window of size 1 (a single template), and move
the sliding window by 1 frame each step. This way, the
optimization will seek to fully align all UAV frames with the
map. This is equivalent to what is done in prior work, where
visual odometry is not taken into consideration for computing
the optimal motion parameters. We use this approach to
illustrate that the algorithm recovers from misalignment on
one frame and successfully relocalizes in the next frame,
even with large UAV motion between frames. Results are
shown in Fig. 9, with some example alignments in Fig. 10.

V. IMPLEMENTATION DETAILS

Training and testing in Section II uses Python 3.6 and
PyTorch 0.3.0. We train using square satellite image patches
sized between 175-225 pixels. Randomly generated projec-
tive warp parameters for training include in-plane rotations
(simulated yaw) of up to 20 degrees, image scaling between

Fig. 10. Some examples of our alignment on the Gravel Pit dataset.
Crops from the satellite map (top) are warped and aligned (middle) with
the corresponding UAV imagery (bottom). The red rectangle is static in all
images, allowing the reader to visually compare aligned landmarks.

0.75 and 1.25, translation of up to 20 pixels, and out-of
plane (simulated roll and pitch) rotation of up to 5 degrees.
Training is done over 50,000 mini-batches of 10 image pairs
each. We use the Adam optimizer with learning rate 1e−4.
We use an OpenCV implementation of SIFT and SURF de-
tection and computation, with brute-force matcher and cross-
check for smallest distance match. We also use the OpenCV’s
findHomography function with RANSAC, with an error
threshold of 5 pixels. The satellite map for the Village dataset
is 4800×2861 pixels at 0.45 meters per pixel width. The map
for the Gravel Pit dataset is 3355×1852 at 0.32 meters per
pixel width. Native UAV image resolution is 4608×3456.
UAV images and map patches are square-cropped and scaled
to 200 pixels each during pose optimization. The output
of VGG16 conv3 has 256 feature channels and is 3-times
spatially downsampled from the input. On a 2.9 GHz Intel
Core i5 laptop with 16 GB RAM, optimization using 2
templates with 4 frames in each visibility neighborhood, and
two overlapping frames between neighborhoods, takes 8.41s
on average over 100 trials. Computational efficiency can be
improved for practical implementations by using inverse-
composition, C++ with optimization libraries, and with GPU.
We empirically find λ = 0.35 best for optimization experi-
ments in these particular datasets.

VI. CONCLUSION

We present a method for GPS-denied localization of
UAVs, making several contributions that improve on previous
work, noted at the end of Section I. In an effort to encourage
more methods and baselines in this space, we make our
source code and datasets available for download. Future
work can include further exploration of learning photometric
invariance using the described alignment method. Instead of
fine-tuning the convolutional weights of an object recognition
model, a massive dataset could be compiled consisting of
millions of satellite image examples and a model could
be trained from scratch. Also to be explored is a rigorous
method for the selection of templates T and visibility neigh-
borhoods V for the optimization, based on characteristics of
the UAV flight that could be automatically determined.
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[27] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on. IEEE,
2011, pp. 3607–3613.

[28] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[29] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611–625, 2018.

[30] H. Alismail, B. Browning, and S. Lucey, “Photometric bundle adjust-
ment for vision-based slam,” in Asian Conference on Computer Vision.
Springer, 2016, pp. 324–341.

[31] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.


